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Physically interesting many-body states

-

Which (pure) quantum states are used mostly to do many-body / condensed matter physics?
e Matrix Product States (MPS)

e Fermionic Gaussian States (FGS)
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Matrix Product States (MPS)

/ Prototypical entangled many-body states \
e ground-states in 1D are MPS with finite bond dimension y;

e extremly useful in numerical simulations of ground states and time-evolution
(DMRG, TEBD, TDVP, etc.);

\ e relatively easy to generate in lab (digital quantum platforms). /
...................... A X — bOnd dimel'lSiOIl

d = local physical dimension

= Stabilizer states U. Schollwoeck (2011) 4



Matrix Product States (MPS)

/ 10)
0)

0)
......................... 0) mmp X
................... . 0
0)
é
= Stabilizer states \ depth (time) /
in 1D
Haar
Area Law Critical Volume Law
| X ~o(1) | X ~pol(N) | X ~exp(N)

U. Schollwoeck (2011)



Fermionic Gaussian States (FGS)

Fermionic Gaussian states are a very important class of states

e fundamental in condensed matter (Slater determinants, BCS wave func-

tion, quantum chemistry)

e extremly interesting also from the quantum info point of view (matchgate

circuits).

{/7#7'71/} — 25;1,1/
v =1,2..2L

— Z z x

) — Az z Yy
Y2i41 = 01...0;_10;

F;u/ — _%Tr[h/,!u 71/][0}

= Stabilizer states

Canonical Anticommutation Relations

Jordan Wigner transformation

2L x 21, covariance matrix

J. Surace, L. Tagliacozzo (2022) 6



Main questions of this talk

1. How much quantum recource is stored in typical MPS and FGS?

2. How can the amount of quantum resource in MPS and FGS be evaluated (numerically)?



Main questions of this talk

1. How much quantum magic is stored in typical MPS and FGS?

2. How can the amount of quantum magic in MPS and FGS be evaluated (numerically)?



Magic (in one slide)

Clifford H S —+
o |
CNOT Universal
1 TorTt — \%(J;g np set of gates
Non-Clifford — [0 ei%] TovTt = 1 (~0® + o¥)
To*TT = g%

e (Clifford gates are relatively straightforward to implement fault-tolerantly
in a Quantum Error Correction code

e Non-Clifford gates can be regarded as a “quantum resource” (in a well-
defined mathematical sense) — quantum magic

S. Bravyi, A. Kitaev (2004)
Stabilizer Rényi Entropies (SRE)
ma(|9)) = D" 3, (Plofp)* My = (1 —=n)" ogmn(|¢))) —logD D

L. Leone, S. F. E. Oliviero, A. Hamma (2021)

|
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1. How much quantum magic is stored in typical MPS?




Random Matrix Product States

What should you expect from typical realizations of MPS?

/ MPS tensors are sub-blocks of Haar matrices: \
@ - -
é) 0)
K U ~ unitary Haar matrix of size dy /
a4 )

\_ 0) 0) 0)

S. Garnerone, T. R. de Oliveira, P. Zanardi (2009)
J. Haferkamp, C. Bertoni, I. Roth, J. Eisert (2021)
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Why Random Matrix Product States?

Quantum circuit equivalent to (R)MPS

Other motivations:

U®

e clear connection with numerics;

U (i+1)

e RMPS as an analytically solvable random circuit;

e MPS are easy to generate in lab;
Efficient preparation via Measurements and Feedback

e connection with entanglement phase transition. - 0 e L
~ v Vv %

D. Malz, G. Styliaris, Z. Wei, J. I. Cirac (2024)
Y. Zhang, S. Gopalakrishnan, G. Styliaris (2024)

Measurement-induced phase transitions by matrix product states scaling

Guillaume Cecile,! Hugo Léio,! and Jacopo De Nardis!

! Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089,
CY Cergy Paris Université, 95302 Cergy-Pontoise Cedex, France
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G. Cecile, H. Loéio, J. De Nardis (2023) ’ 12



Methods: Weingarten calculus

To compute average of k replicas of U® U)* we need Weingarten calculus!

~

>
| . | J
permutation operator (permutes k replicas) T| = H 7| = )
tation ind 4 | |
permutation index 7 € Sy, (;vv-\’ﬂ'
Wg, .. Weingarten matrix Ar’M
\ T =transfer matrix in the replica (permutations) space J
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Magic of RMPS

Our results

MPS with small bond dimension x ~pol(/N) can store as magic as Haar states!

Deviation of the RMPS magic from that of Haar states:

6" = D™ (Eymrarps[mn(19)] — Egmraar [mn([4))))

-0 (3)
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Magic of RMPS

07 =0

a)

x b)

Our results
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Numerical benchmark (Haar circuit, MPS truncated at bond dimension x):
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Magic of RMPS: benchmarks

Our results

MPS with small bond dimension x ~pol(/N) can store as magic as Haar states!

Consistent with other results in which SREs have been found to saturate at time ¢ ~ log N

t ~ logy

-

-

o O
~— TN S~

?729¢°

X. Turkeshi

, E. Tirrito, P. Sierant (2024)
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Clifford enhanced MPS (CMPS)

We introduce the following ensemble of states:

CMPS = {[¢)) =Uc|¢), , U € Cy and |p), € MPS},

all the entanglement
you need

all the magic 3—3—3—3—3—3 ¢)
you need \J

Even if CMPS are volume-law entangled, one can efficiently compute expectation values over them:

?_?????

J{OOOOOO—lll b
6 bbb
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Clifford enhanced MPS: practical relevance

Recently, CMPS algorithms for ground state, time-evolution, circuits with

Iterative construction for Clifford circuits with measurements

A. Paviglianiti, GL, M. Collura, A. Silva (2024)
arXiv:2405.06054

Clifford Dressed Time-Dependent Variational Principle (TDVP)

A. F. Mello, A. Santini, GL,
J. De Nardis, M. Collura (2024)
arXiv:2407.01692

Similar approaches:
e “Augmented” DMRG and TDVP X. Qian, J. Huang, M. Qin (2024)
e G. E. Fux, B. Beri, R. Fazio, E. Tirrito (2024)
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Clifford enhanced MPS: frame potential

CMPS are arbitrarily entangled! How well do they approximate Haar states?
Fk) = B o [|{10]0") 2¥] = k-th Frame potential

16® — pigallz = 179 — 7]

Haar

M) = By [[4) (|°F] Phtnar = Eurtiaar[[4) (1] %)

| < € = e-approximate k-design +

L — 5 k=3 k=5

For k =1,2,3: féﬁps = 7P meananing that CMPS are (exact) 3-design. What about k& = 47

Haar’
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2. How can the amount of quantum magic in MPS and FGS be evaluated (numerically)?




SRE by sampling

My(0) = 5(Wlolv)®  ma(lY) = Egmrry o) 11 ']

e Sample Pauli strings ¢ with probability Il (o)

e Given a list of samples {o"}/_, estimate:

{le—%zz\fllogﬂw(a’“)—logD n=1
M, ~(1—-n)"tlog (% Zﬁle Hz_l(ak)) —log D n>1

statistical estimator

21



SRE by sampling

My(0) = 5(Wlolv)®  ma(lY) = Egmrry o) 11 ']

Benefits / issues

e simple, efficient, and highly parallelizable (N ~ 107)

e forn =1, N~ N is enough to reach a given accuracy

e for n > 1, in worst case scenario, N' ~ exp(N) to reach given accuracy

e this does not necessarily occur, particularly with ’atypical’ states (low-energy spectrum)

22



Pauli sampling of MPS

[1,(0) = mp(01)mp(02|01) - Tp(on|o1 -+ ON-1)

IMPORTANT: it is a “perfect” sampler: no Markov chain Monte Carlo!

23



Majorana sampling of FGS

Our results

There exists an algorithm that allows to sample Pauli (Majorana) strings efficiently with probability:

My (21, 2..2n) o< [(](71) (12)2 . (v2L) "= [) |° = det[[la, .00, ]
x; € {O, 1}
The Algorithm is efficient O(L?) per sample

[ IMPORTANT: it is a “perfect” sampler: no Markov chain Monte Carlo! J
Technical remark: this is a Determinantal Point Process (DPP)
sampling is achieved by using particular formulas on (partial) sums of minors
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1. How much quantum magic is stored in typical FGS?




Magic of Random FGS

[ =0r(0..0)0T O~ Haar[O(2L)]

(random) Gaussian transformation

—Haar === fit (a=1) ® random gaussians (a=1)
= == fit (=2) B random gaussians (a=2)

00 A
s 40+
=
201
) - . .
0 50 100
L
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Magic of Random FGS

[ =0r(0..0)0T O~ Haar[O(2L)]

(random) Gaussian transformation

——
—a—

—a—

—h

o
1
—a—
—a—

10! | L e

Our results

Numerically there is evidence that for Random FGS:

extensive part
as Haar random states

—N
M, = c(a)L — a(a)log L + cost.

. L .
logarithmic corrections
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Magic of Random FGS

[ =0r(0..0)0T O~ Haar[O(2L)]

(random) Gaussian transformation

——
—a—

—a—

—h

o
1
—a—
—a—

10! | L e

Our results

Analytics suggests that for random FGS:

extensive part
as Haar random states

—N
M, = c(a)L — a(a)log L + cost.

. L .
logarithmic corrections
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Participation Entropies of Random FGS

Participation Rényi Entropies

Ln(|9)) = 22, |(zlv) " Sn = (1 —n)~ log In(|1))

Our results
Analytical calculations for random FGS give:

extensive part
as Haar random states

)L — a(«) log L + cost.

. v .
logarithmic corrections
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Conclusions / Outlook

Matrix Product States

. Typical MPS with bond dimension x ~pol(V) are fully magic

. MPS can be sampled efficiently to get accurate estimation of the SREs

(up to ~ O(100) qubits)

~

J

Free fermions

. Typical FGS are fully magic, a part for corrections which are logarithmic

in the system size

. FGS can be sampled efficiently to get accurate estimation of the SREs (up

to ~ O(1000) fermionic modes)

~

J

Thank youl!
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